Nonlinear Dimensionality Reduction Based on HSIC Maximization
نویسندگان
چکیده
منابع مشابه
Learning with Weak Views Based on Dependence Maximization Dimensionality Reduction
Large number of applications involving multiple views of data are coming into use, e.g., reporting news on the Internet by both text and video, identifying a person by both fingerprints and face images, etc. Meanwhile, labeling these data needs expensive efforts and thus most data are left unlabeled in many applications. Co-training can exploit the information of unlabeled data in multi-view sc...
متن کاملNonlinear Dimensionality Reduction
The visual interpretation of data is an essential step to guide any further processing or decision making. Dimensionality reduction (or manifold learning) tools may be used for visualization if the resulting dimension is constrained to be 2 or 3. The field of machine learning has developed numerous nonlinear dimensionality reduction tools in the last decades. However, the diversity of methods r...
متن کاملAuxiliary Variational Information Maximization for Dimensionality Reduction
Mutual Information (MI) is a long studied measure of information content, and many attempts to apply it to feature extraction and stochastic coding have been made. However, in general MI is computationally intractable to evaluate, and most previous studies redefine the criterion in forms of approximations. Recently we described properties of a simple lower bound on MI, and discussed its links t...
متن کاملCharacterization of Eukaryotic Core Promoters Based on Nonlinear Dimensionality Reduction
Characterization and identification of eukaryotic promoter is important for the gene prediction and genome annotation. In this paper, we study the structural characteristics of the core promoters in several eukaryotes through a series of DNA physicochemical properties and adopt a method that combines the alignment and average of multiple promoters and the nonlinear dimensionality reduction tech...
متن کاملSupervised Nonlinear Dimensionality Reduction Based on Evolution Strategy
Most of the classifiers suffer from the curse of dimensionality during classification of high dimensional image and non-image data. In this paper, we introduce a new supervised nonlinear dimensionality reduction (S-NLDR) algorithm called supervised dimensionality reduction based on evolution strategy (SDRES) for both image and nonimage data. The SDRES method uses the power of evolution strategy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2018.2871825